Search results
Results from the WOW.Com Content Network
More generally in conservative systems, equilibrium is established at a point in configuration space where the gradient of the potential energy with respect to the generalized coordinates is zero. If a particle in equilibrium has zero velocity, that particle is in static equilibrium.
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
Mechanical equilibrium, the state in which the sum of the forces, and torque, on each particle of the system is zero; Radiative equilibrium, the state where the energy radiated is balanced by the energy absorbed; Secular equilibrium, a state of radioactive elements in which the production rate of a daughter nucleus is balanced by its own decay rate
In a set of curvilinear coordinates ξ = (ξ 1, ξ 2, ξ 3), the law in tensor index notation is the "Lagrangian form" [18] [19] = (+) = (˙), ˙, where F a is the a-th contravariant component of the resultant force acting on the particle, Γ a bc are the Christoffel symbols of the second kind, = is the kinetic energy of the particle, and g bc ...
A system in contact equilibrium with another system can by a thermodynamic operation be isolated, and upon the event of isolation, no change occurs in it. A system in a relation of contact equilibrium with another system may thus also be regarded as being in its own state of internal thermodynamic equilibrium.
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
The position vector r k of particle k is a function of all the n generalized ... The principle of virtual work states that if a system is in static equilibrium, ...