enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  3. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  4. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    In the study of queue networks one typically tries to obtain the equilibrium distribution of the network, although in many applications the study of the transient state is fundamental. Queueing theory is the mathematical study of waiting lines, or queues. [1] A queueing model is constructed so that queue lengths and waiting time can be ...

  5. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2] A single server serves customers one at a time from the front of the queue, according to a first-come, first-served ...

  6. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).

  7. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...

  8. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    In queueing theory, a discipline within the mathematical theory of probability, the G/M/1 queue represents the queue length in a system where interarrival times have a general (meaning arbitrary) distribution and service times for each job have an exponential distribution. [1]

  9. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [3] [4] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.