enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    The problem is that in estimating the sample mean, the process has already made our estimate of the mean close to the value we sampled—identical, for n = 1. In the case of n = 1, the variance just cannot be estimated, because there is no variability in the sample. But consider n = 2. Suppose the sample were (0, 2).

  3. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Since the square root is a strictly concave function, it follows from Jensen's inequality that the square root of the sample variance is an underestimate. The use of n1 instead of n in the formula for the sample variance is known as Bessel's correction, which corrects the bias in the estimation of the population variance, and some, but not ...

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  5. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  6. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    An unbiased estimator for the variance is given by applying Bessel's correction, using N1 instead of N to yield the unbiased sample variance, denoted s 2: = = (¯). This estimator is unbiased if the variance exists and the sample values are drawn independently with replacement.

  7. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

  8. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    Cochran's theorem then states that Q 1 and Q 2 are independent, with chi-squared distributions with n1 and 1 degree of freedom respectively. This shows that the sample mean and sample variance are independent.

  9. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample (2, 1, 0), for example, would have a sample mean of 1. If the statistician is interested in K variables rather than one, each observation having a value for each of those K variables, the overall sample mean consists of K sample means for individual variables.