enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions. However, his work was not known during his lifetime.

  3. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    noncentrality measure in statistics [25] The transition function in the formal definition of a finite automaton, pushdown automaton, or Turing machine; Infinitesimal - see Limit of a function § (ε, δ)-definition of limit; Not to be confused with ∂ which is based on the Latin letter d but often called a "script delta"

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    Augustin-Louis Cauchy in 1821, [6] followed by Karl Weierstrass, formalized the definition of the limit of a function which became known as the (ε, δ)-definition of limit. The modern notation of placing the arrow below the limit symbol is due to G. H. Hardy, who introduced it in his book A Course of Pure Mathematics in 1908. [7]

  6. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    H. Jerome Keisler, David Tall, and other educators maintain that the use of infinitesimals is more intuitive and more easily grasped by students than the "epsilondelta" approach to analytic concepts. [10] This approach can sometimes provide easier proofs of results than the corresponding epsilondelta formulation of the proof.

  7. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    Namely, the epsilon-delta definition of uniform continuity requires four quantifiers, while the infinitesimal definition requires only two quantifiers. It has the same quantifier complexity as the definition of uniform continuity in terms of sequences in standard calculus, which however is not expressible in the first-order language of the real ...

  8. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  9. Limit - Wikipedia

    en.wikipedia.org/wiki/Limit

    Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...