enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    A regression carried out on standardized variables produces standardized coefficients. Values for standardized and unstandardized coefficients can also be re-scaled to one another subsequent to either type of analysis. Suppose that is the regression coefficient resulting from a linear regression (predicting by ).

  3. Path coefficient - Wikipedia

    en.wikipedia.org/wiki/Path_coefficient

    Path coefficients are standardized versions of linear regression weights which can be used in examining the possible causal linkage between statistical variables in the structural equation modeling approach. The standardization involves multiplying the ordinary regression coefficient by the standard deviations of the corresponding explanatory ...

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The following are the major assumptions made by standard linear regression models with standard estimation techniques (e.g. ordinary least squares): Weak exogeneity. This essentially means that the predictor variables x can be treated as fixed values, rather than random variables. This means, for example, that the predictor variables are ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  6. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Regression analysis, in the context of sensitivity analysis, involves fitting a linear regression to the model response and using standardized regression coefficients as direct measures of sensitivity. The regression is required to be linear with respect to the data (i.e. a hyperplane, hence with no quadratic terms, etc., as regressors) because ...

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    This shows that r xy is the slope of the regression line of the standardized data points (and that this line passes through the origin). Since − 1 ≤ r x y ≤ 1 {\displaystyle -1\leq r_{xy}\leq 1} then we get that if x is some measurement and y is a followup measurement from the same item, then we expect that y (on average) will be closer ...

  8. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/.../Pearson_correlation_coefficient

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.