Search results
Results from the WOW.Com Content Network
Perfect fluids are used in general relativity to model idealized distributions of matter, such as the interior of a star or an isotropic universe. In the latter case, the equation of state of the perfect fluid may be used in Friedmann–Lemaître–Robertson–Walker equations to describe the evolution of the universe.
Let us assume a static, spherically symmetric perfect fluid. The metric components are similar to those for the Schwarzschild metric: [2] = = By the perfect fluid assumption, the stress-energy tensor is diagonal (in the central spherical coordinate system), with eigenvalues of energy density and pressure:
A scalar field can be viewed as a sort of perfect fluid with equation of state = ˙ ˙ + (), where ˙ is the time-derivative of and () is the potential energy. A free ( V = 0 {\displaystyle V=0} ) scalar field has w = 1 {\displaystyle w=1} , and one with vanishing kinetic energy is equivalent to a cosmological constant: w = − 1 {\displaystyle ...
Fluid solutions: must arise entirely from the stress–energy tensor of a fluid (often taken to be a perfect fluid); the only source for the gravitational field is the energy, momentum, and stress (pressure and shear stress) of the matter comprising the fluid.
A radiation fluid is a perfect fluid with =: = (+). The last two are often used as cosmological models for (respectively) matter-dominated and radiation-dominated epochs. Notice that while in general it requires ten functions to specify a fluid, a perfect fluid requires only two, and dusts and radiation fluids each require only one function.
In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure.
The equations of motion are contained in the continuity equation of the stress–energy tensor: =, where is the covariant derivative. [5] For a perfect fluid, = (+) +. Here is the total mass-energy density (including both rest mass and internal energy density) of the fluid, is the fluid pressure, is the four-velocity of the fluid, and is the metric tensor. [2]
When different magnetic field regions come into contact, they cannot smoothly merge due to the perfect conductivity of the fluid. Instead, they form sharp boundaries where electric currents flow. This process is analogous to how non-mixing fluids like oil and water form distinct boundaries rather than mixing.