Search results
Results from the WOW.Com Content Network
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638, [ 1 ] and used by him to prove the parabolic form of projectile motion.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The mass might be a projectile or a satellite. [1] For example, it can be an orbit — the path of a planet , asteroid , or comet as it travels around a central mass . In control theory , a trajectory is a time-ordered set of states of a dynamical system (see e.g. Poincaré map ).
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The path of this projectile launched from a height y 0 has a range d.. In physics, a projectile launched with specific initial conditions will have a range.It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance.
As a simple approximate equation, the physical value of is usually very close to 1/3 of the detonation velocity of the explosive material for standard explosives. [1] For a typical set of military explosives, the value of D 2 E {\displaystyle {\frac {D}{\sqrt {2E}}}} ranges from between 2.32 for Tritonal and 3.16 for PAX-29n.
Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion, quantitative change, qualitative change, and substantial change.
Some energy is lost in deforming the projectile and causing it to spin. There are also frictional losses between the projectile and the barrel. The projectile, as it travels down the barrel, compresses the air in front of it, which adds resistance to its forward motion. [1] The breech and the barrel must resist the high-pressure gases without ...