Search results
Results from the WOW.Com Content Network
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
The measurement of pH can become difficult at extremely acidic or alkaline conditions, such as below pH 2.5 (ca. 0.003 mol/dm 3 acid) or above pH 10.5 (above ca. 0.0003 mol/dm 3 alkaline). This is due to the breakdown of the Nernst equation in such conditions when using a glass electrode.
In addition, since log D is pH-dependent, the pH at which the log D was measured must be specified. In areas such as drug discovery—areas involving partition phenomena in biological systems such as the human body—the log D at the physiologic pH = 7.4 is of particular interest. [citation needed]
An acidity function is a measure of the acidity of a medium or solvent system, [1] [2] usually expressed in terms of its ability to donate protons to (or accept protons from) a solute (Brønsted acidity). The pH scale is by far the most commonly used acidity function, and is ideal for dilute aqueous solutions.
If different species occur in the octanol-water system by dissociation or association, several P-values and one D-value exist for the system. If, on the other hand, the substance is only present in a single species, the P and D values are identical. P is usually expressed as a common logarithm, i.e. Log P (also Log P ow or, less frequently, Log ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location.