Search results
Results from the WOW.Com Content Network
A gain greater than one (greater than zero dB), that is, amplification, is the defining property of an active device or circuit, while a passive circuit will have a gain of less than one. [4] The term gain alone is ambiguous, and can refer to the ratio of output to input voltage (voltage gain), current (current gain) or electric power (power ...
In electrical engineering, the power gain of an electrical network is the ratio of an output power to an input power. Unlike other signal gains, such as voltage and current gain, "power gain" may be ambiguous as the meaning of terms "input power" and "output power" is not always clear. Three important power gains are operating power gain ...
To make this work for non-zero-load input, the output of the feedback network needs to be loaded with an equivalent load for the purpose of determining the frequency response of the loop gain. It is also assumed that the graph of gain vs. frequency crosses unity gain with a negative slope and does so only once.
The use of voltage gain figure is appropriate when the amplifier's input impedance is much higher than the source impedance, and the load impedance higher than the amplifier's output impedance. If two equivalent amplifiers are being compared, the amplifier with higher gain settings would be more sensitive as it would take less input signal to ...
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
This represents the gain magnitude (absolute value), the ratio of the output power-wave to the input power-wave, and it equals the square-root of the power gain. This is a real-value (or scalar) quantity, the phase information being dropped.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Δ = the determinant of the graph. y in = input-node variable; y out = output-node variable; G = complete gain between y in and y out; N = total number of forward paths between y in and y out; G k = path gain of the kth forward path between y in and y out; L i = loop gain of each closed loop in the system