Search results
Results from the WOW.Com Content Network
A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation + + + = defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n.
The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...
In a statistical-classification problem with two classes, a decision boundary or decision surface is a hypersurface that partitions the underlying vector space into two sets, one for each class. The classifier will classify all the points on one side of the decision boundary as belonging to one class and all those on the other side as belonging ...
A consequence of this theorem (and its proof) is that if f is differentiable, a level set is a hypersurface and a manifold outside the critical points of f. At a critical point, a level set may be reduced to a point (for example at a local extremum of f) or may have a singularity such as a self-intersection point or a cusp.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =
The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k - submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian G ~ k , n {\displaystyle {\tilde {G}}_{k,n}} , i.e. the set of all oriented k -planes in R n .
More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.