enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color moments - Wikipedia

    en.wikipedia.org/wiki/Color_moments

    A simple and concise example of the use of color moments for image retrieval tasks is illustrated in. [5] Consider having several test images in a database and a "New Image". The goal is to retrieve images from the database that are similar to the "New Image". The first three color moments are used as features.

  3. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.

  4. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...

  5. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    one can calculate a single point (e.g. the center of an image) using high-precision arithmetic (z), giving a reference orbit, and then compute many points around it in terms of various initial offsets delta plus the above iteration for epsilon, where epsilon-zero is set to 0.

  6. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    This histogram shows the number of cases per unit interval as the height of each block, so that the area of each block is equal to the number of people in the survey who fall into its category. The area under the curve represents the total number of cases (124 million). This type of histogram shows absolute numbers, with Q in thousands.

  7. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  8. scikit-image - Wikipedia

    en.wikipedia.org/wiki/Scikit-image

    scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation , geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection , and more. [ 3 ]

  9. Color histogram - Wikipedia

    en.wikipedia.org/wiki/Color_histogram

    In image processing and photography, a color histogram is a representation of the distribution of colors in an image. For digital images, a color histogram represents the number of pixels that have colors in each of a fixed list of color ranges, that span the image's color space, the set of all possible colors. The color histogram can be built ...