Search results
Results from the WOW.Com Content Network
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.
Exponential Utility Function for different risk profiles. In economics and finance, exponential utility is a specific form of the utility function, used in some contexts because of its convenience when risk (sometimes referred to as uncertainty) is present, in which case expected utility is maximized. Formally, exponential utility is given by:
A consumer's indirect utility (,) can be computed from their utility function (), defined over vectors of quantities of consumable goods, by first computing the most preferred affordable bundle, represented by the vector (,) by solving the utility maximization problem, and second, computing the utility ((,)) the consumer derives from that ...
A possible solution is to calculate n one-dimensional cardinal utility functions - one for each attribute. For example, suppose there are two attributes: apples and bananas (), both range between 0 and 99. Using VNM, we can calculate the following 1-dimensional utility functions:
A Cobb-Douglas utility function (see Cobb-Douglas production function) with two goods and income generates Marshallian demand for goods 1 and 2 of = / and = /. Rearrange the Slutsky equation to put the Hicksian derivative on the left-hand-side yields the substitution effect:
Given a utility function u(x,y), to calculate the MRS, one takes the partial derivative of the function u with respect to good x and divide it by the partial derivative of the function u with respect to good y. If the marginal rate of substitution is diminishing along an indifference curve, that is the magnitude of the slope is decreasing or ...
Roy's identity reformulates Shephard's lemma in order to get a Marshallian demand function for an individual and a good from some indirect utility function.. The first step is to consider the trivial identity obtained by substituting the expenditure function for wealth or income in the indirect utility function (,), at a utility of :
Constant elasticity of substitution (CES) is a common specification of many production functions and utility functions in neoclassical economics.CES holds that the ability to substitute one input factor with another (for example labour with capital) to maintain the same level of production stays constant over different production levels.