enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The Dalí cross, a net of a tesseract The tesseract can be unfolded into eight cubes into 3D space, just as the cube can be unfolded into six squares into 2D space.. In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1]

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square

  4. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  5. Square packing - Wikipedia

    en.wikipedia.org/wiki/Square_packing

    Square packing in a circle is a related problem of packing n unit squares into a circle with radius as small as possible. For this problem, good solutions are known for n up to 35. Here are the minimum known solutions for up to n =12: [ 11 ] (Only the cases n=1 and n=2 are known to be optimal)

  6. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Three-dimensional objects are bounded by two-dimensional surfaces: a cube is bounded by 6 square faces. By applying dimensional analogy, one may infer that a four-dimensional cube, known as a tesseract, is bounded by three-dimensional volumes. And indeed, this is the case: mathematics shows that the tesseract is bounded by 8 cubes.

  7. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A cube, a special case of the square rectangular box. A rectangular cuboid is a convex polyhedron with six rectangle faces. These are often called "cuboids", without qualifying them as being rectangular, but a cuboid can also refer to a more general class of polyhedra, with six quadrilateral faces. [ 1 ]

  8. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Squarecube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the squarecube law.

  9. 5-cube - Wikipedia

    en.wikipedia.org/wiki/5-cube

    In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .