enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1]

  3. Rooted graph - Wikipedia

    en.wikipedia.org/wiki/Rooted_graph

    In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. [ 1 ] [ 2 ] Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots.

  4. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The graph =. A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5.

  5. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis. If the discriminant is positive, the graph touches the x-axis at two points; if zero, the graph touches at one point; and if negative, the graph does not touch the x ...

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  7. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    The simplest root-finding algorithm is the bisection method. Let f be a continuous function for which one knows an interval [a, b] such that f(a) and f(b) have opposite signs (a bracket). Let c = (a +b)/2 be the middle of the interval (the midpoint or the point that bisects