Search results
Results from the WOW.Com Content Network
In bacteria, the special pair is called P760, P840, P870, or P960. "P" here means pigment, and the number following it is the wavelength of light absorbed. Electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they are at the lowest possible energy level, the ground state.
Antenna molecules can absorb all wavelengths of light within the visible spectrum. [12] The number of these pigment molecules varies from organism to organism. For instance, the cyanobacterium Synechococcus elongatus ( Thermosynechococcus elongatus ) has about 100 chlorophylls and 20 carotenoids, whereas spinach chloroplasts have around 200 ...
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
Due to pre-calibration and efficiency issues this number is never seen on a label; the values often found are 800, 3000 and 6000 Ci/mmol. With this number it is possible to calculate the total chemical concentration and the hot-to-cold ratio. "Calibration date" is the date in which the vial's activity is the same as on the label.
A carbon-13 label was used to determine the mechanism in the 1,2- to 1,3-didehydrobenzene conversion of the phenyl substituted aryne precursor 1 to acenaphthylene. [3]An isotopic tracer, (also "isotopic marker" or "isotopic label"), is used in chemistry and biochemistry to help understand chemical reactions and interactions.
A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay , it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
So, 5 out of 6 carbons from the 2 G3P molecules are used for this purpose. Therefore, there is only 1 net carbon produced to play with for each turn. To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle. To make one glucose molecule (which can be created from 2 G3P molecules) would require 6 turns of the Calvin ...