Search results
Results from the WOW.Com Content Network
The quaternion (4-dimensional) Mandelbrot set is simply a solid of revolution of the 2-dimensional Mandelbrot set (in the j-k plane), and is therefore uninteresting to look at. [43] Taking a 3-dimensional cross section at d = 0 ( q = a + b i + c j + d k ) {\displaystyle d=0\ (q=a+bi+cj+dk)} results in a solid of revolution of the 2-dimensional ...
John Hamal Hubbard (born October 6 or 7, 1945) is an American mathematician and professor at Cornell University and the Université de Provence.He is known for the mathematical contributions he made with Adrien Douady in the field of complex dynamics, including a study of the Mandelbrot set.
Chaos: Making a New Science was the first popular book about chaos theory. It describes the Mandelbrot set, Julia sets, and Lorenz attractors without using complicated mathematics.
Udo of Aachen (c.1200–1270) is a fictional monk, a creation of British technical writer Ray Girvan, who introduced him in an April Fool's hoax article in 1999. According to the article, Udo was an illustrator and theologian who discovered the Mandelbrot set some 700 years before Benoit Mandelbrot.
One of them, his nephew Benoit Mandelbrot, was to discover the Mandelbrot set and coin the word fractal in the 1970s. In 1939 he fought for France when the country was invaded by the Nazis, then in 1940, along with many scientists helped by Louis Rapkine and the Rockefeller Foundation , Mandelbrojt relocated to the United States, taking up a ...
Misiurewicz points in the context of the Mandelbrot set can be classified based on several criteria. One such criterion is the number of external rays that converge on such a point. [4] Branch points, which can divide the Mandelbrot set into two or more sub-regions, have three or more external arguments (or angles). Non-branch points have ...
Mandelbrot may refer to: Benoit Mandelbrot (1924–2010), a mathematician associated with fractal geometry Mandelbrot set , a fractal popularized by Benoit Mandelbrot
In one-dimensional complex dynamics, the connectedness locus of a parameterized family of one-variable holomorphic functions is a subset of the parameter space which consists of those parameters for which the corresponding Julia set is connected.