enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]

  3. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  4. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...

  5. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    Lithium has a low ionization energy and readily gives up its lone valence electron to a fluorine atom, which has a positive electron affinity and accepts the electron that was donated by the lithium atom.

  6. Nucleophile - Wikipedia

    en.wikipedia.org/wiki/Nucleophile

    In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. Nucleophilic describes the affinity of a nucleophile to bond with positively charged ...

  7. Noble gas compound - Wikipedia

    en.wikipedia.org/wiki/Noble_gas_compound

    All noble gases have full s and p outer electron shells (except helium, which has no p sublevel), and so do not form chemical compounds easily. Their high ionization energy and almost zero electron affinity explain their non-reactivity. In 1933, Linus Pauling predicted that the heavier noble gases would be able to form compounds with fluorine ...

  8. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The orbital wave functions are positive in the red regions and negative in the blue. The right column shows virtual MO's which are empty in the ground state, but may be occupied in excited states. In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a ...

  9. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    A nucleus with a large charge will cause an electron to have a high velocity. A higher electron velocity means an increased electron relativistic mass, and as a result the electrons will be near the nucleus more of the time and thereby contract the radius for small principal quantum numbers. [12]