Search results
Results from the WOW.Com Content Network
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
The quotient is also less commonly defined as the greatest whole number of times a divisor may be subtracted from a dividend—before making the remainder negative. For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while
When the numerator and the denominator are both positive, the fraction is called proper if the numerator is less than the denominator, and improper otherwise. [11] The concept of an "improper fraction" is a late development, with the terminology deriving from the fact that "fraction" means "a piece", so a proper fraction must be less than 1. [ 10 ]
A number that does not evenly divide but leaves a remainder is sometimes called an aliquant part of . An integer n > 1 {\displaystyle n>1} whose only proper divisor is 1 is called a prime number . Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself.
On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator and denominator by a common factor.
The theorem which underlies the definition of the Euclidean division ensures that such a quotient and remainder always exist and are unique. [20] In Euclid's original version of the algorithm, the quotient and remainder are found by repeated subtraction; that is, r k−1 is subtracted from r k−2 repeatedly until the remainder r k is smaller ...