Search results
Results from the WOW.Com Content Network
White dwarfs give off more radiation in the ultra-violet than it is the case for main-sequence stars. This leads to a higher UV-exposure for SDSS 1557B when compared to a regular hot Jupiter. The fact that SDSS 1557B is tidally locked creates vast temperature changes in the dayside and nightside of the brown dwarf.
The white dwarf existed for 10.21 ±0.22 Gyrs, meaning the total age is 10.7 ±0.3 Gyrs. [1] Cold white dwarfs are often strongly affected by collision induced absorption (CIA) of hydrogen. This can lead to faint optical red and infrared brightness. These white dwarfs are also called IR-faint white dwarfs. WD J2147–4035 is however very red (r ...
White dwarfs with hydrogen-poor atmospheres, such as WD J2147–4035, are less affected by CIA and therefore have a yellow to orange color. [80] [77] The white dwarf cooling sequence seen by ESA's Gaia mission. White dwarf core material is a completely ionized plasma – a mixture of nuclei and electrons – that is
About 6% of white dwarfs show infrared excess due to a disk around a white dwarf. [66] In the past only a relative small sample of white dwarf disks was known. [67] Due to advances in white dwarf detection (e.g. with Gaia or LAMOST) and improvement of WISE infrared catalogs with unWISE/CatWISE, the number has increased to hundreds of candidates.
WD 0816–310 (PM J08186–3110) is a magnetic white dwarf with metal pollution, originating from the tidal disruption of a planetary body. The metals are guided by the magnetic field onto the surface of the white dwarf, creating a "scar" on the surface of the white dwarf.
For a billion or so years after a star collapses to form a white dwarf, it is "white" hot with surface temperatures of ~20,000 K. X-ray emission has been detected from PG 1658+441, a hot, isolated, magnetic white dwarf, first detected in an Einstein IPC observation and later identified in an Exosat channel multiplier array observation. [ 19 ] "
EMF stands for electric and magnetic fields, which, according to the National Institute of Environmental Health and Sciences, are invisible areas of energy often referred to as radiation.
The primary is a typical hydrogen white dwarf, as indicated by its spectral type of DA. It has about 39% of the Sun's mass and is only 1.86% as wide (12,900 km). [6] With a high effective temperature of 16,500 K, it emits radiation mostly in the ultraviolet range. [8] The brown dwarf, designated WD 0137-349B, can be detected from an infrared ...