Search results
Results from the WOW.Com Content Network
White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.
Myelin (/ ˈ m aɪ. ə l ɪ n / MY-ə-lin) is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. [1] [2] The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However ...
Spontaneous myelin repair was first observed in cat models. [49] It was later discovered to occur in the human CNS as well, specifically in cases of multiple sclerosis (MS). [50] Spontaneous myelin repair does not result in morphologically normal oligodendrocytes and is associated with thinner myelin compared to axonal diameter than normal ...
Diffusion tensor imaging (DTI) is important when a tissue—such as the neural axons of white matter in the brain or muscle fibers in the heart—has an internal fibrous structure analogous to the anisotropy of some crystals. Water will then diffuse more rapidly in the direction aligned with the internal structure (axial diffusion), and more ...
The atlas is based on magnetic resonance imaging (MRI). It traces the growth, white matter, connectivity, and development of the C57BL/6 mouse brain from embryonic day 12 to postnatal day 80. [5] This atlas enhances the ability of neuroscientists to study how pollutants and genetic mutations effect the development of
This allows researchers to quantify anatomical features of the brain in terms of shape, mass, volume (e.g. of the hippocampus, or of the primary versus secondary visual cortex), and to derive more specific information, such as the encephalization quotient, grey matter density and white matter connectivity, gyrification, cortical thickness, or ...
Using structural MRI, quantitative assessment of a number of developmental processes can be carried out including defining growth patterns, [9] and characterizing the sequence of myelination. [10] These data complement evidence from Diffusion Tensor Imaging (DTI) studies that have been widely used to investigate the development of white matter.