enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    In addition, it is known that when single-layer graphene is supported on an amorphous material, the thermal conductivity is reduced to about 500 – 600 W⋅m −1 ⋅K −1 at room temperature as a result of scattering of graphene lattice waves by the substrate, [172] [173] and can be even lower for few-layer graphene encased in amorphous ...

  3. Potential applications of graphene - Wikipedia

    en.wikipedia.org/wiki/Potential_applications_of...

    Graphene strongly interacts with photons, with the potential for direct band-gap creation. This is promising for optoelectronic and nanophotonic devices. Light interaction arises due to the Van Hove singularity. Graphene displays different time scales in response to photon interaction, ranging from femtoseconds (ultra-fast) to picoseconds.

  4. Discovery of graphene - Wikipedia

    en.wikipedia.org/wiki/Discovery_of_graphene

    This "epitaxial graphene" consists of a single-atom-thick hexagonal lattice of sp 2-bonded carbon atoms, as in free-standing graphene. However, significant charge transfers from the substrate to the epitaxial graphene, and in some cases, the d-orbitals of the substrate atoms hybridize with the π orbitals of graphene, which significantly alters ...

  5. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    Graphene doped with various gaseous species (both acceptors and donors) can be returned to an undoped state by gentle heating in vacuum. [22] [24] Even for dopant concentrations in excess of 10 12 cm −2 carrier mobility exhibits no observable change. [24] Graphene doped with potassium in ultra-high vacuum at low temperature can reduce ...

  6. Graphene nanoribbon - Wikipedia

    en.wikipedia.org/wiki/Graphene_nanoribbon

    Graphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.

  7. Graphene plasmonics - Wikipedia

    en.wikipedia.org/wiki/Graphene_plasmonics

    So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]

  8. Graphenated carbon nanotube - Wikipedia

    en.wikipedia.org/wiki/Graphenated_carbon_nanotube

    The fundamental advantage of an integrated graphene-CNT structure is the high surface area three-dimensional framework of the CNTs coupled with the high edge density of graphene. Graphene edges provide significantly higher charge density and reactivity than the basal plane, but they are difficult to arrange in a three-dimensional, high volume ...

  9. Graphene Flagship - Wikipedia

    en.wikipedia.org/wiki/Graphene_Flagship

    The Graphene Flagship is a European Union scientific research initiative. [1] With a budget of €1 billion, it is one of the large scale initiatives organized by the Future and Emerging Technologies program, along with the Human Brain Project and the Quantum Technologies Flagship .