enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [3] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis.

  3. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...

  5. Talk:Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Talk:Taylor's_theorem

    For instance, formulas (1) (2) and (3) may give a reasonable inductive definition for (0); formula (4), already used in the paper for the proof of the mean value form of the remainder, also gives directly the integral form of the remainder, by a short plain application of the fundamental theorem of calculus, with no need of iterated integration ...

  6. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  7. QB Room, Week 10: Here’s a path to fixing Cowboys and Dak ...

    www.aol.com/sports/qb-room-week-10-path...

    A longtime AFC executive who has held some powerful positions over the last two decades said he viewed Sanders as “Tyrod Taylor 2.0,” then remarked, “I don’t think the talent level is ...

  8. QB Room: If the Eagles implode again, they can thank the ...

    www.aol.com/sports/qb-room-eagles-implode-again...

    If self-inflicted drama that teases future problems is the end goal, the Eagles are already there. Give them the rings. Name A.J. Brown the fiasco MVP.

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed ⁠ 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } ⁠ as a sum of arctangents of smaller values, eventually resulting in a variety of ...