Search results
Results from the WOW.Com Content Network
Glucose is a sugar with the molecular formula C 6 H 12 O 6.It is overall the most abundant monosaccharide, [4] a subcategory of carbohydrates.It is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.
Glucose (C 6 H 12 O 6), ribose (C 5 H 10 O 5), Acetic acid (C 2 H 4 O 2), and formaldehyde (CH 2 O) all have different molecular formulas but the same empirical formula: CH 2 O.This is the actual molecular formula for formaldehyde, but acetic acid has double the number of atoms, ribose has five times the number of atoms, and glucose has six times the number of atoms.
l-Glucose is an organic compound with formula C 6 H 12 O 6 or O=CH[CH(OH)] 5 H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory.
Monosaccharides are also called "simple sugars", the most important being glucose. Most monosaccharides have a formula that conforms to C n H 2n O n with n between 3 and 7 (deoxyribose being an exception). Glucose has the molecular formula C 6 H 12 O 6. The names of typical sugars end with -ose, as in "glucose" and "fructose".
There are several types of these formulas, including molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the molecular formula for glucose is C 6 H 12 O 6 rather than the glucose empirical formula, which is CH 2 O. Except for the very simple substances ...
So, 5 out of 6 carbons from the 2 G3P molecules are used for this purpose. Therefore, there is only 1 net carbon produced to play with for each turn. To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle. To make one glucose molecule (which can be created from 2 G3P molecules) would require 6 turns of the Calvin ...
The empirical formula is often the same as the molecular formula but not always. For example, the molecule acetylene has molecular formula C 2 H 2 , but the simplest integer ratio of elements is CH. The molecular mass can be calculated from the chemical formula and is expressed in conventional atomic mass units equal to 1/12 of the mass of a ...
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.