enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function.Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time.

  3. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series: random data plus trend, with best-fit line and different applied filters. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.

  4. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The CRAN task view on Time Series is the reference with many more links. The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]

  5. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  6. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  8. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-12-ARIMA can be used together with many statistical packages, such as SAS in its econometric and time series (ETS) package, R in its (seasonal) package, [6] Gretl or EViews which provides a graphical user interface for X-12-ARIMA, and NumXL which avails X-12-ARIMA functionality in Microsoft Excel. [7] There is also a version for MATLAB. [8]

  9. Hurst exponent - Wikipedia

    en.wikipedia.org/wiki/Hurst_exponent

    A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning that the decay in autocorrelation is slower than exponential, following a power law; for the series it means that a high value tends to be followed by another high value and that future excursions to more high values do occur. A value in the ...