enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to

  3. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.

  5. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  6. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A Gaussian process can be used as a prior probability distribution over functions in Bayesian inference. [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For ...

  7. Random projection - Wikipedia

    en.wikipedia.org/wiki/Random_projection

    The random matrix R can be generated using a Gaussian distribution. The first row is a random unit vector uniformly chosen from S d − 1 {\displaystyle S^{d-1}} . The second row is a random unit vector from the space orthogonal to the first row, the third row is a random unit vector from the space orthogonal to the first two rows, and so on.

  8. Gaussian free field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_free_field

    In probability theory and statistical mechanics, the Gaussian free field (GFF) is a Gaussian random field, a central model of random surfaces (random height functions). The discrete version can be defined on any graph, usually a lattice in d-dimensional Euclidean space. The continuum version is defined on R d or on a bounded subdomain of R d.

  9. Generalized normal distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_normal...

    The generalized normal log-likelihood function has infinitely many continuous derivates (i.e. it belongs to the class C ∞ of smooth functions) only if is a positive, even integer. Otherwise, the function has ⌊ β ⌋ {\displaystyle \textstyle \lfloor \beta \rfloor } continuous derivatives.