enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kingman's formula - Wikipedia

    en.wikipedia.org/wiki/Kingman's_formula

    Kingman's approximation states: () (+)where () is the mean waiting time, τ is the mean service time (i.e. μ = 1/τ is the service rate), λ is the mean arrival rate, ρ = λ/μ is the utilization, c a is the coefficient of variation for arrivals (that is the standard deviation of arrival times divided by the mean arrival time) and c s is the coefficient of variation for service times.

  3. Turnaround time - Wikipedia

    en.wikipedia.org/wiki/Turnaround_time

    Lead Time vs Turnaround Time: Lead Time is the amount of time, defined by the supplier or service provider, that is required to meet a customer request or demand. [5] Lead-time is basically the time gap between the order placed by the customer and the time when the customer get the final delivery, on the other hand the Turnaround Time is in order to get a job done and deliver the output, once ...

  4. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    John Kingman gave a formula for the mean waiting time in a G/G/1 queue, now known as Kingman's formula. [ 17 ] Leonard Kleinrock worked on the application of queueing theory to message switching in the early 1960s and packet switching in the early 1970s.

  5. Little's law - Wikipedia

    en.wikipedia.org/wiki/Little's_law

    In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.

  6. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    Kingman's formula gives an approximation for the mean waiting time in a G/G/1 queue. [6] Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution which can be solved using the Wiener–Hopf method. [7]

  7. Lindley equation - Wikipedia

    en.wikipedia.org/wiki/Lindley_equation

    Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.

  8. Lead time - Wikipedia

    en.wikipedia.org/wiki/Lead_time

    A lead time is the latency between the initiation and completion of a process. For example, the lead time between the placement of an order and delivery of new cars by a given manufacturer might be between 2 weeks and 6 months, depending on various particularities.

  9. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    The Pollaczek–Khinchine formula gives the mean queue length and mean waiting time in the system. [9] [10] Recently, the Pollaczek–Khinchine formula has been extended to the case of infinite service moments, thanks to the use of Robinson's Non-Standard Analysis. [11]