enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    For example, connectedness of zones might be enforced, or concurrency of curves or multiple points might be banned, as might tangential intersection of curves. In the adjacent diagram, examples of small Venn diagrams are transformed into Euler diagrams by sequences of transformations; some of the intermediate diagrams have concurrency of curves.

  3. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v). The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

  4. Eulerian graph - Wikipedia

    en.wikipedia.org/?title=Eulerian_graph&redirect=no

    Eulerian graph. 8 languages. Čeština; ... Download as PDF; Printable version; In other projects ... Appearance. move to sidebar hide. From Wikipedia, the free ...

  5. Eulerian matroid - Wikipedia

    en.wikipedia.org/wiki/Eulerian_matroid

    For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.

  6. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .

  7. Eulerian circuit, Euler cycle or Eulerian path – a path through a graph that takes each edge once Eulerian graph has all its vertices spanned by an Eulerian path; Euler class; Euler diagram – popularly called "Venn diagrams", although some use this term only for a subclass of Euler diagrams. Euler tour technique

  8. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5] An alternative construction involves concatenating together, in lexicographic order, all the Lyndon words whose length divides n. [6]

  9. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree