enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A unit vector is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â.

  4. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    A three-dimensional vector can be specified in the following form, using unit vector notation: = ^ + ȷ ^ + ^ where v x, v y, and v z are the scalar components of v. Scalar components may be positive or negative; the absolute value of a scalar component is its magnitude.

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  6. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  7. Standard basis - Wikipedia

    en.wikipedia.org/wiki/Standard_basis

    Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]

  8. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.

  9. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .