Search results
Results from the WOW.Com Content Network
A three-dimensional vector can be specified in the following form, using unit vector notation: = ^ + ȷ ^ + ^ where v x, v y, and v z are the scalar components of v. Scalar components may be positive or negative; the absolute value of a scalar component is its magnitude.
As explained above, a vector is often described by a set of vector components that add up to form the given vector. Typically, these components are the projections of the vector on a set of mutually perpendicular reference axes (basis vectors). The vector is said to be decomposed or resolved with respect to that set. Illustration of tangential ...
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...
In 1773, Joseph-Louis Lagrange used the component form of both the dot and cross products in order to study the tetrahedron in three dimensions. [24] [note 3] In 1843, William Rowan Hamilton introduced the quaternion product, and with it the terms vector and scalar.
The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors . Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B . [ 1 ]