enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    Canonical Huffman codes address these two issues by generating the codes in a clear standardized format; all the codes for a given length are assigned their values sequentially. This means that instead of storing the structure of the code tree for decompression only the lengths of the codes are required, reducing the size of the encoded data.

  4. Comparison of data-serialization formats - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_data...

    UTF-8-encoded, preceded by varint-encoded integer length of string in bytes Repeated value with the same tag or, for varint-encoded integers only, values packed contiguously and prefixed by tag and total byte length — Smile \x21

  5. Package-merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Package-merge_algorithm

    The optimal length-limited Huffman code will encode symbol i with a bit string of length h i. The canonical Huffman code can easily be constructed by a simple bottom-up greedy method, given that the h i are known, and this can be the basis for fast data compression. [2]

  6. Variable-length code - Wikipedia

    en.wikipedia.org/wiki/Variable-length_code

    Other commonly used names for this concept are prefix-free code, instantaneous code, or context-free code. The example mapping M 3 {\displaystyle M_{3}} above is not a prefix code because we do not know after reading the bit string "0" whether it encodes an "a" source symbol, or if it is the prefix of the encodings of the "b" or "c" symbols.

  7. Modified Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Modified_Huffman_coding

    Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...

  8. Arithmetic coding - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_coding

    When naively Huffman coding binary strings, no compression is possible, even if entropy is low (e.g. ({0, 1}) has probabilities {0.95, 0.05}). Huffman encoding assigns 1 bit to each value, resulting in a code of the same length as the input. By contrast, arithmetic coding compresses bits well, approaching the optimal compression ratio of

  9. Type–length–value - Wikipedia

    en.wikipedia.org/wiki/Type–length–value

    The type and length are fixed in size (typically 1–4 bytes), and the value field is of variable size. These fields are used as follows: Type A binary code, often simply alphanumeric, which indicates the kind of field that this part of the message represents; Length The size of the value field (typically in bytes); Value