enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  3. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    In operations research, the Big M method is a method of solving linear programming problems using the simplex algorithm.The Big M method extends the simplex algorithm to problems that contain "greater-than" constraints.

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    3.3 Solution by linear programming. ... Download as PDF; ... linear" because the cost function to be optimized as well as all the constraints contain only linear terms.

  5. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Dyer (1992) showed that the minimum enclosing ellipsoid problem could also be formulated as a convex optimization problem by adding a small number of non-linear constraints. The use of randomization to improve the time bounds for low dimensional linear programming and related problems was pioneered by Clarkson and by Dyer & Frieze (1989).

  6. Dantzig–Wolfe decomposition - Wikipedia

    en.wikipedia.org/wiki/Dantzig–Wolfe_decomposition

    In order to use Dantzig–Wolfe decomposition, the constraint matrix of the linear program must have a specific form. A set of constraints must be identified as "connecting", "coupling", or "complicating" constraints wherein many of the variables contained in the constraints have non-zero coefficients.

  7. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    Consider the problem of Linearly Constrained Convex Quadratic Programming. Under reasonable assumptions (the problem is feasible, the system of constraints is regular at every point, and the quadratic objective is strongly convex), the active-set method terminates after finitely many steps, and yields a global solution to the problem.

  8. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  9. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    It turns out that any linear programming problem can be reduced to a linear feasibility problem (i.e. minimize the zero function subject to some linear inequality and equality constraints). One way to do this is by combining the primal and dual linear programs together into one program, and adding the additional (linear) constraint that the ...