enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  3. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  4. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.

  5. Color moments - Wikipedia

    en.wikipedia.org/wiki/Color_moments

    Consider having several test images in a database and a "New Image". The goal is to retrieve images from the database that are similar to the "New Image". The first three color moments are used as features. There are several steps in this computation. Image preprocessing (Optional) - The image preprocessing step of the computation process is ...

  6. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [4]

  7. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram. Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method. [3]

  8. Local ternary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_ternary_patterns

    In this way, each thresholded pixel has one of the three values. Neighboring pixels are combined after thresholding into a ternary pattern. Computing a histogram of these ternary values will result in a large range, so the ternary pattern is split into two binary patterns. Histograms are concatenated to generate a descriptor double the size of LBP.

  9. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram illustrates the distribution of values.