Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
A binomial raised to the n th power, represented as (x + y) n can be expanded by means of the binomial theorem or, equivalently, using Pascal's triangle. For example, the square (x + y) 2 of the binomial (x + y) is equal to the sum of the squares of the two terms and twice the product of the terms, that is:
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
Relationship to the binomial theorem [ edit ] The Leibniz rule bears a strong resemblance to the binomial theorem , and in fact the binomial theorem can be proven directly from the Leibniz rule by taking f ( x ) = e a x {\displaystyle f(x)=e^{ax}} and g ( x ) = e b x , {\displaystyle g(x)=e^{bx},} which gives
Like the usual binomial theorem, this formula has numerous generalizations and extensions; one such, corresponding to Newton's generalized binomial theorem for negative powers, is ∏ k = 0 n − 1 1 1 − q k t = ∑ k = 0 ∞ ( n + k − 1 k ) q t k . {\displaystyle \prod _{k=0}^{n-1}{\frac {1}{1-q^{k}t}}=\sum _{k=0}^{\infty }{n+k-1 \choose k ...
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.