Search results
Results from the WOW.Com Content Network
An unregulated boost converter is used as the voltage increase mechanism in the circuit known as the "Joule thief", based on blocking oscillator concepts. This circuit topology is used with low power battery applications, and is aimed at the ability of a boost converter to "steal" the remaining energy in a battery.
The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is equivalent to a flyback converter using a single inductor instead of a transformer. [1] Two different topologies are called buck–boost converter. Both of them can produce a ...
The joule thief is not a new concept. Basically, it adds an LED to the output of a self-oscillating voltage booster, which was patented many decades ago.. US Patent 1949383, [1] filed in 1930, "Electronic device", describes a vacuum tube based oscillator circuit to convert a low voltage into a high voltage.
While similar to a traditional buck-boost converter, it has a few advantages. It has a non-inverted output (the output has the same electrical polarity as the input). Its use of a series capacitor to couple energy from the input to the output allows the circuit to respond more gracefully to a short-circuit output.
Buck–boost transformers can be used to power low voltage circuits including control, lighting circuits, or applications that require 12, 16, 24, 32 or 48 volts, consistent with the design's secondaries. The transformer is connected as an isolating transformer and the nameplate kVA rating is the transformer’s capacity. [2]
The bootstrap circuit uses a coupling capacitor, formed from the gate/source capacitance of a transistor, to drive a signal line to slightly greater than the supply voltage. [10] Some all-pMOS integrated circuits such as the Intel 4004 and the Intel 8008 use that 2-transistor "bootstrap load" circuit. [11] [12] [13]
Chia seeds add healthy omega-3 fats, fiber and a little protein for an extra nutritional boost. View Recipe. Kiwi-Granola Breakfast Banana Split. Carson Downing.
Fig. 1: Schematic of a flyback converter. The flyback converter is used in both AC/DC, and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation.