enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mutation–selection balance - Wikipedia

    en.wikipedia.org/wiki/Mutationselection_balance

    Setting aside other factors (e.g., balancing selection, and genetic drift), the equilibrium number of deleterious alleles is then determined by a balance between the deleterious mutation rate and the rate at which selection purges those mutations. Mutationselection balance was originally proposed to explain how genetic variation is ...

  3. Balancing selection - Wikipedia

    en.wikipedia.org/wiki/Balancing_selection

    Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. [1]

  4. Neutral theory of molecular evolution - Wikipedia

    en.wikipedia.org/wiki/Neutral_theory_of...

    Nearly neutral mutations are those that carry selection coefficients less than the inverse of twice the effective population size. [30] The population dynamics of nearly neutral mutations are only slightly different from those of neutral mutations unless the absolute magnitude of the selection coefficient is greater than 1/N, where N is the ...

  5. Natural selection - Wikipedia

    en.wikipedia.org/wiki/Natural_selection

    At the same time, new mutations occur, resulting in a mutationselection balance. The exact outcome of the two processes depends both on the rate at which new mutations occur and on the strength of the natural selection, which is a function of how unfavourable the mutation proves to be.

  6. Genetic load - Wikipedia

    en.wikipedia.org/wiki/Genetic_load

    The Haldane-Muller theorem of mutationselection balance says that the load depends only on the deleterious mutation rate and not on the selection coefficient. [6] Specifically, relative to an ideal genotype of fitness 1, the mean population fitness is exp ⁡ ( − U ) {\displaystyle \exp(-U)} where U is the total deleterious mutation rate ...

  7. Shifting balance theory - Wikipedia

    en.wikipedia.org/wiki/Shifting_balance_theory

    Shifting balance theory aims to explain how this may be possible. The shifting balance theory is a theory of evolution proposed in 1932 by Sewall Wright, suggesting that adaptive evolution may proceed most quickly when a population divides into subpopulations with restricted gene flow.

  8. Drift-barrier hypothesis - Wikipedia

    en.wikipedia.org/wiki/Drift-barrier_hypothesis

    Individuals with a high mutation rate now increasingly decrease population fitness, and selection causes the mutation rate to decrease again. At the same time, new advantageous alleles have a diminishing positive effect on fitness. At a certain point, natural selection, mutation rate and random genetic drift reach a balance. [7]

  9. Genetic hitchhiking - Wikipedia

    en.wikipedia.org/wiki/Genetic_hitchhiking

    Hitchhiking is necessary for the evolution of higher mutation rates to be favored by natural selection on evolvability. A hypothetical mutator M increases the general mutation rate in the area around it. Due to the increased mutation rate, the nearby A allele may be mutated into a new, advantageous allele, A* --M-----A-- -> --M-----A*--