enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  3. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    If the numbers of agents and tasks are equal, then the problem is called balanced assignment. Otherwise, it is called unbalanced assignment . [ 1 ] If the total cost of the assignment for all tasks is equal to the sum of the costs for each agent (or the sum of the costs for each task, which is the same thing in this case), then the problem is ...

  4. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions , which can also take into account inequality constraints of the form h ( x ) ≤ c {\displaystyle h(\mathbf {x} )\leq c} for a ...

  6. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    Any linear program can be converted into an equational form by adding slack variables. As a preliminary clean-up step, we verify that: The system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } has at least one solution (otherwise the whole LP has no solution and there is nothing more to do);

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0.. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T.

  8. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  9. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Since the set cover problem has solution values that are integers (the numbers of sets chosen in the subfamily), the optimal solution quality must be at least as large as the next larger integer, 2. Thus, in this instance, despite having a different value from the unrelaxed problem, the linear programming relaxation gives us a tight lower bound ...