enow.com Web Search

  1. Ad

    related to: how to determine symmetry algebraically
  2. Education.com is great and resourceful - MrsChettyLife

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  3. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The key difference is that the symmetric algebra of an affine space is not a graded algebra, but a filtered algebra: one can determine the degree of a polynomial on an affine space, but not its homogeneous parts. For instance, given a linear polynomial on a vector space, one can determine its constant part by evaluating at 0.

  4. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    The type of symmetry is determined by the way the pieces are organized, or by the type of transformation: An object has reflectional symmetry (line or mirror symmetry) if there is a line (or in 3D a plane) going through it which divides it into two pieces that are mirror images of each other. [6]

  5. Symmetry operation - Wikipedia

    en.wikipedia.org/wiki/Symmetry_operation

    In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.

  6. Burnside's lemma - Wikipedia

    en.wikipedia.org/wiki/Burnside's_lemma

    Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.

  7. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group S n {\displaystyle \mathrm {S} _{n}} defined over a finite set of n {\displaystyle n} symbols consists of ...

  8. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The symmetry group of a snowflake is D 6, a dihedral symmetry, the same as for a regular hexagon. In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1] [2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory ...

  9. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field.These n roots determine the polynomial, and when they are considered as independent variables, the coefficients of the polynomial are symmetric polynomial functions of the roots.

  1. Ad

    related to: how to determine symmetry algebraically