Search results
Results from the WOW.Com Content Network
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
A decision tree or a classification tree is a tree in which each internal (non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with an input feature are labeled with each of the possible values of the target feature or the arc leads to a subordinate decision node on a different input feature.
This section discusses strategies of extending the existing binary classifiers to solve multi-class classification problems. Several algorithms have been developed based on neural networks, decision trees, k-nearest neighbors, naive Bayes, support vector machines and extreme learning machines to address multi-class classification problems ...
Instead of decision trees, linear models have been proposed and evaluated as base estimators in random forests, in particular multinomial logistic regression and naive Bayes classifiers. [ 37 ] [ 38 ] [ 39 ] In cases that the relationship between the predictors and the target variable is linear, the base learners may have an equally high ...
Types of discriminative models include logistic regression (LR), conditional random fields (CRFs), decision trees among many others. Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are
Naive Bayes; Artificial neural networks ... a logistic model tree (LMT) is a classification model with an associated supervised ... a decision tree that has linear ...
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition