enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .

  3. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  4. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  5. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  6. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

  7. Darboux integral - Wikipedia

    en.wikipedia.org/wiki/Darboux_integral

    In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function.Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. [1]

  8. Riemann problem - Wikipedia

    en.wikipedia.org/wiki/Riemann_problem

    A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.

  9. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.