Search results
Results from the WOW.Com Content Network
Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]
The nerves of the cornea (this is, corneal nerves of the subepithelial layer terminate near superficial epithelial layer of the cornea in a logarithmic spiral pattern). [12] The bands of tropical cyclones, such as hurricanes. [13] Many biological structures including the shells of mollusks. [14]
A model for the pattern of florets in the head of a sunflower [13] was proposed by H. Vogel. This has the form =, = where n is the index number of the floret and c is a constant scaling factor, and is a form of Fermat's spiral.
Singh cites Pingala's cryptic formula misrau cha ("the two are mixed") and scholars who interpret it in context as saying that the number of patterns for m beats (F m+1) is obtained by adding one [S] to the F m cases and one [L] to the F m−1 cases. [12] Bharata Muni also expresses knowledge of the sequence in the Natya Shastra (c. 100 BC–c ...
From this equation, substituting φ by φ = r 2 / a 2 (a rearranged form of the polar equation for the spiral) and then substituting r by r = √ x 2 + y 2 (the conversion from Cartesian to polar) leaves an equation for the Fermat spiral in terms of only x and y: = (+).
It describes how patterns in nature, such as stripes and spirals, can arise naturally from a homogeneous, uniform state. The theory, which can be called a reaction–diffusion theory of morphogenesis, has become a basic model in theoretical biology. [2] Such patterns have come to be known as Turing patterns.
Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature. Gielis has filed a patent application related to the synthesis of patterns generated by the superformula, which expired effective 2020-05-10.
Three examples of Turing patterns Six stable states from Turing equations, the last one forms Turing patterns. The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.