enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    Markov decision process (MDP), also called a stochastic dynamic program or stochastic control problem, is a model for sequential decision making when outcomes are uncertain. [ 1 ] Originating from operations research in the 1950s, [ 2 ] [ 3 ] MDPs have since gained recognition in a variety of fields, including ecology , economics , healthcare ...

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    When the Markov matrix is replaced by the adjacency matrix of a finite graph, the resulting shift is termed a topological Markov chain or a subshift of finite type. [60] A Markov matrix that is compatible with the adjacency matrix can then provide a measure on the subshift.

  5. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    with initial condition X 0 = x 0, where W t denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [0, T]. Then the Euler–Maruyama approximation to the true solution X is the Markov chain Y defined as follows: Partition the interval [0, T] into N equal subintervals of width >:

  6. Matrix geometric method - Wikipedia

    en.wikipedia.org/wiki/Matrix_geometric_method

    In probability theory, the matrix geometric method is a method for the analysis of quasi-birth–death processes, continuous-time Markov chain whose transition rate matrices with a repetitive block structure. [1] The method was developed "largely by Marcel F. Neuts and his students starting around 1975." [2]

  7. Partially observable Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Partially_observable...

    Another line of approximate solution techniques for solving POMDPs relies on using (a subset of) the history of previous observations, actions and rewards up to the current time step as a pseudo-state. Usual techniques for solving MDPs based on these pseudo-states can then be used (e.g. Q-learning). Ideally the pseudo-states should contain the ...

  8. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]

  9. Uniformization (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uniformization...

    In probability theory, uniformization method, (also known as Jensen's method [1] or the randomization method [2]) is a method to compute transient solutions of finite state continuous-time Markov chains, by approximating the process by a discrete-time Markov chain. [2]