Search results
Results from the WOW.Com Content Network
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
In Euclidean space, there is a unique circle passing through any given three non-collinear points P 1, P 2, P 3. Using Cartesian coordinates to represent these points as spatial vectors, it is possible to use the dot product and cross product to calculate the radius and center of the circle. Let
The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
The center of all rectangular hyperbolas that pass through the vertices of a triangle lies on its nine-point circle. Examples include the well-known rectangular hyperbolas of Keipert, JeÅ™ábek and Feuerbach. This fact is known as the Feuerbach conic theorem. The nine point circle and the 16 tangent circles of the orthocentric system
A tangential polygon has each of its sides tangent to a particular circle, called the incircle or inscribed circle. The centre of the incircle, called the incentre, can be considered a centre of the polygon. A cyclic polygon has each of its vertices on a particular circle, called the circumcircle or circumscribed circle. The centre of the ...