Search results
Results from the WOW.Com Content Network
When there are dependent sources, the more general method must be used. The voltage at the terminals is calculated for an injection of a 1 ampere test current at the terminals. This voltage divided by the 1 A current is the Norton impedance R no (in ohms). This method must be used if the circuit contains dependent sources, but it can be used in ...
A general formula for the current I X in a resistor R X that is in parallel with a combination of other resistors of total resistance R T (see Figure 1) is [1] = +, where I T is the total current entering the combined network of R X in parallel with R T.
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
Parallel resistance is illustrated by the circulatory system. Each organ is supplied by an artery that branches off the aorta. The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries ...
For example, a 10 ohm resistor connected in parallel with a 5 ohm resistor and a 15 ohm resistor produces 1 / 1/10 + 1/5 + 1/15 ohms of resistance, or 30 / 11 = 2.727 ohms. A resistor network that is a combination of parallel and series connections can be broken up into smaller parts that are either one or the other.
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
A bridge circuit is a topology of electrical circuitry in which two circuit branches (usually in parallel with each other) are "bridged" by a third branch connected between the first two branches at some intermediate point along them. The bridge was originally developed for laboratory measurement purposes and one of the intermediate bridging ...
The op-amp inverting amplifier is a typical circuit, with parallel negative feedback, based on the Miller theorem, where the op-amp differential input impedance is apparently decreased to zero Zeroed impedance uses an inverting (usually op-amp) amplifier with enormously high gain A v → ∞ {\displaystyle A_{v}\to \infty } .