Search results
Results from the WOW.Com Content Network
Suppose further that a 1 /a 2 and a 0 /a 2 are analytic functions. The power series method calls for the construction of a power series solution = =. If a 2 is zero for some z, then the Frobenius method, a variation on this method, is suited to deal with so called "singular points". The method works analogously for higher order equations as ...
The solutions in terms of the original variable are obtained by substituting x 3 back in for u, which gives x 3 = 1 and x 3 = 8. {\displaystyle x^{3}=1\quad {\text{and}}\quad x^{3}=8.} Then, assuming that one is interested only in real solutions, the solutions of the original equation are
Euler substitution is a method for evaluating integrals of the form ∫ R ( x , a x 2 + b x + c ) d x , {\displaystyle \int R(x,{\sqrt {ax^{2}+bx+c}})\,dx,} where R {\displaystyle R} is a rational function of x {\displaystyle x} and a x 2 + b x + c {\textstyle {\sqrt {ax^{2}+bx+c}}} .
As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).
Hume-Rothery rules, named after William Hume-Rothery, are a set of basic rules that describe the conditions under which an element could dissolve in a metal, forming a solid solution. There are two sets of rules; one refers to substitutional solid solutions, and the other refers to interstitial solid solutions.
brings the Abel equation of the first kind to the canonical form u ′ = u 3 + ϕ ( ξ ) . {\displaystyle u'=u^{3}+\phi (\xi ).\,} Dimitrios E. Panayotounakos and Theodoros I. Zarmpoutis discovered an analytic method to solve the above equation in an implicit form.
Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.
Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.