enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  3. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.

  4. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    A matrix H representing a linear function : whose kernel is C is called a check matrix of C (or sometimes a parity check matrix). Equivalently, H is a matrix whose null space is C . If C is a code with a generating matrix G in standard form, G = [ I k ∣ P ] {\displaystyle {\boldsymbol {G}}=[I_{k}\mid P]} , then H = [ − P T ∣ I n − k ...

  5. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.

  6. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    For example, p 2 provides an even parity for bits 2, 3, 6, and 7. It also details which transmitted bit is covered by which parity bit by reading the column. For example, d 1 is covered by p 1 and p 2 but not p 3 This table will have a striking resemblance to the parity-check matrix (H) in the next section.

  7. Dual code - Wikipedia

    en.wikipedia.org/wiki/Dual_code

    A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code. The dual of the dual code is always the original code.

  8. Expander code - Wikipedia

    en.wikipedia.org/wiki/Expander_code

    In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).

  9. Multidimensional parity-check code - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_parity...

    The two-dimensional parity-check code, usually called the optimal rectangular code, is the most popular form of multidimensional parity-check code. Assume that the goal is to transmit the four-digit message "1234", using a two-dimensional parity scheme. First the digits of the message are arranged in a rectangular pattern: 12 34