Search results
Results from the WOW.Com Content Network
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.
A matrix H representing a linear function : whose kernel is C is called a check matrix of C (or sometimes a parity check matrix). Equivalently, H is a matrix whose null space is C . If C is a code with a generating matrix G in standard form, G = [ I k ∣ P ] {\displaystyle {\boldsymbol {G}}=[I_{k}\mid P]} , then H = [ − P T ∣ I n − k ...
The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.
For example, p 2 provides an even parity for bits 2, 3, 6, and 7. It also details which transmitted bit is covered by which parity bit by reading the column. For example, d 1 is covered by p 1 and p 2 but not p 3 This table will have a striking resemblance to the parity-check matrix (H) in the next section.
A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code. The dual of the dual code is always the original code.
In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).
The two-dimensional parity-check code, usually called the optimal rectangular code, is the most popular form of multidimensional parity-check code. Assume that the goal is to transmit the four-digit message "1234", using a two-dimensional parity scheme. First the digits of the message are arranged in a rectangular pattern: 12 34