enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  3. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]

  4. JASP - Wikipedia

    en.wikipedia.org/wiki/JASP

    Download as PDF; Printable version; ... Learn classical statistics with simple examples and supporting text. Machine Learning: ... Support Vector Machine Regression;

  5. Category:Support vector machines - Wikipedia

    en.wikipedia.org/wiki/Category:Support_vector...

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Regularization perspectives on support vector machines; S.

  6. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    where each network module can be a linear transform, a nonlinear activation function, a convolution, etc. () is the input vector, () is the output vector from the first module, etc. BatchNorm is a module that can be inserted at any point in the feedforward network.

  7. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .

  8. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]

  9. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...