enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :

  5. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    If the reaction is first order it has the unit s −1, and for that reason it is often called the frequency factor or attempt frequency of the reaction. Most simply, k is the number of collisions that result in a reaction per second, A is the number of collisions (leading to a reaction or not) per second occurring with the proper orientation to ...

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...

  7. Damköhler numbers - Wikipedia

    en.wikipedia.org/wiki/Damköhler_numbers

    Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order, the Damköhler number for a convective flow system is defined as:

  8. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations. The following reactions follow a Langmuir–Hinshelwood mechanism: [4] 2 CO + O 2 → 2 CO 2 on a platinum catalyst. CO + 2H 2 → CH 3 OH on a ZnO catalyst. C 2 H 4 + H 2 → C 2 H 6 on a copper catalyst. N 2 O + H 2 ...

  9. Reactivity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Reactivity_(chemistry)

    where the rate is the change in the molar concentration in one second in the rate-determining step of the reaction (the slowest step), [A] is the product of the molar concentration of all the reactants raised to the correct order (known as the reaction order), and k is the reaction constant, which is constant for one given set of circumstances ...