enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them. The example here, based on the Mona Lisa, provides a simple illustration. Each point on the painting can be represented as a vector ...

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm ...

  6. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    The remainder of the divide step is to solve for the eigenvalues (and if desired the eigenvectors) of ^ and ^, that is to find the diagonalizations ^ = and ^ =. This can be accomplished with recursive calls to the divide-and-conquer algorithm, although practical implementations often switch to the QR algorithm for small enough submatrices.

  7. Defective matrix - Wikipedia

    en.wikipedia.org/wiki/Defective_matrix

    In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n {\displaystyle n\times n} matrix is defective if and only if it does not have n {\displaystyle n} linearly independent eigenvectors. [ 1 ]

  8. Nonlinear eigenproblem - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_eigenproblem

    Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function M {\displaystyle M} maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.

  9. Quadratic eigenvalue problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_eigenvalue_problem

    Quadratic eigenvalue problems arise naturally in the solution of systems of second order linear differential equations without forcing: ″ + ′ + = Where (), and ,,.If all quadratic eigenvalues of () = + + are distinct, then the solution can be written in terms of the quadratic eigenvalues and right quadratic eigenvectors as