enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    Intensity is used most frequently with waves such as acoustic waves , matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred.

  3. Sound power - Wikipedia

    en.wikipedia.org/wiki/Sound_power

    Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."

  4. Spectral density - Wikipedia

    en.wikipedia.org/wiki/Spectral_density

    In signal processing, the power spectrum () of a continuous time signal describes the distribution of power into frequency components composing that signal. [1] According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range.

  5. Audio power - Wikipedia

    en.wikipedia.org/wiki/Audio_power

    [16] [1] [17] [18] For other waveforms, the relationship between peak power and average power is the peak-to-average power ratio (PAPR). The peak power of an amplifier is determined by the voltage rails and the maximum amount of current its electronic components can handle for an instant without damage.

  6. Crest factor - Wikipedia

    en.wikipedia.org/wiki/Crest_factor

    The peak-to-average power ratio (PAPR) is the peak amplitude squared (giving the peak power) divided by the RMS value squared (giving the average power). [1] It is the square of the crest factor. When expressed in decibels , crest factor and PAPR are equivalent, due to the way decibels are calculated for power ratios vs amplitude ratios .

  7. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    To describe the signal quality without taking the receiver into account, the optical SNR (OSNR) is used. The OSNR is the ratio between the signal power and the noise power in a given bandwidth. Most commonly a reference bandwidth of 0.1 nm is used. This bandwidth is independent of the modulation format, the frequency and the receiver.

  8. Audio system measurements - Wikipedia

    en.wikipedia.org/wiki/Audio_system_measurements

    A component having a 'flat' frequency response will not change the weighting (i.e., intensity) of signal content across the specified frequency range. The frequency range often specified for audio components is between 20 Hz to 20 kHz, which broadly reflects the human hearing range (the highest audible frequency for most people is less than 20 ...

  9. A-weighting - Wikipedia

    en.wikipedia.org/wiki/A-weighting

    A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]