Search results
Results from the WOW.Com Content Network
Strictly speaking, the term backpropagation refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more ...
Download QR code; Print/export ... Gradient descent is a method ... This technique is used in stochastic gradient descent and as an extension to the backpropagation ...
This can perform significantly better than "true" stochastic gradient descent described, because the code can make use of vectorization libraries rather than computing each step separately as was first shown in [6] where it was called "the bunch-mode back-propagation algorithm". It may also result in smoother convergence, as the gradient ...
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
This formulation enables backpropagation through the sampling process, allowing for end-to-end training of the VAE model using stochastic gradient descent or its variants. Variational inference [ edit ]
Choosing a proportionality constant and eliminating the minus sign to enable us to move the weight in the negative direction of the gradient to minimize error, we arrive at our target equation: = ′ ().
steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant); Levenberg–Marquardt and conjugate gradient (Fletcher–Reeves update, Polak–Ribiére update, Powell–Beale restart, scaled conjugate gradient). [4]
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.